Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.

نویسندگان

  • Hrvoje Tkalčić
  • Mallory Young
  • Jack B Muir
  • D Rhodri Davies
  • Maurizio Mattesini
چکیده

The core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging paleoslabs in the D″ layer beneath Central America and the Caribbean using seismic waveform inversion

D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geod...

متن کامل

Density structure of Earth's lowermost mantle from Stoneley mode splitting observations

Advances in our understanding of Earth's thermal evolution and the style of mantle convection rely on robust seismological constraints on lateral variations of density. The large-low-shear-wave velocity provinces (LLSVPs) atop the core-mantle boundary beneath Africa and the Pacific are the largest structures in the lower mantle, and hence severely affect the convective flow. Here, we show that ...

متن کامل

Global P wave tomography of Earth’s lowermost mantle from partition modeling

[1] Determining the scale-length, magnitude, and distribution of heterogeneity in the lowermost mantle is crucial to understanding whole mantle dynamics, and yet it remains a much debated and ongoing challenge in geophysics. Common shortcomings of current seismically derived lowermost mantle models are incomplete raypath coverage, arbitrary model parameterization, inaccurate uncertainty estimat...

متن کامل

Spin and valence dependence of iron partitioning in Earth's deep mantle.

We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth's lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (h...

متن کامل

Partial melting in a thermo-chemical boundary layer at the base of the mantle

Seismological detections of complex structures in the lowermost mantle boundary layer (the D′′ region) motivate a conceptual model of a compositionally stratified thermo-chemical boundary layer (TCBL) within which lateral temperature variations (sustained by large-scale mid-mantle flow) cause variations of partial melt fraction. Partial melt fractions of from 0 to 30% in the TCBL occur due to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015